The HIT Test in Practice: Understanding Oestrogen Metabolism

Charlotte Hunter
KBMO Diagnostics UK

Meet the Team

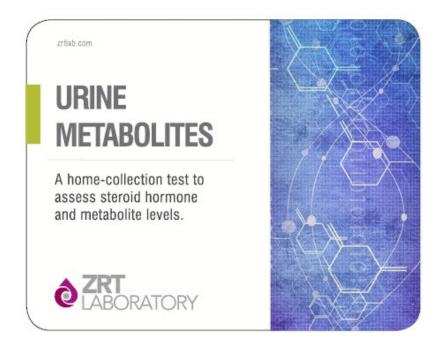
Charlotte Hunter Head of KBMO UK

Clare Kennedy Operations Manager

Linette Petrillo Customer Services

Natasha Khan Sales

Kelly Hutson Events



Emily Birch Clinical Support

Overview

- The Hormone Insights Test (HIT)
- Oestrogen basics
- Steroid pathways*
- Oestrogen metabolism overview
- Methylation
- BPA
- What next?

There IS Another Way!

- The Hormone Insight Test (HIT): Powered by the Advanced Urine Hormone Metabolites Test by ZRT
- Measures 44 hormone-related markers
- 13 oestrogens, 8 androgens
- Diurnal cortisol & melatonin patterns
- Includes BPA (rarely assessed endocrine disruptor)

The Hormone Insights Test (HIT)

- Developed by ZRT laboratory pioneers in hormone testing
- The ORIGINAL urine metabolites test
- Built on decades of research and clinical use
- The HIT Test combines ZRT's scientific credibility with KBMO's practitioner-first support model.

Oestrogen Basics

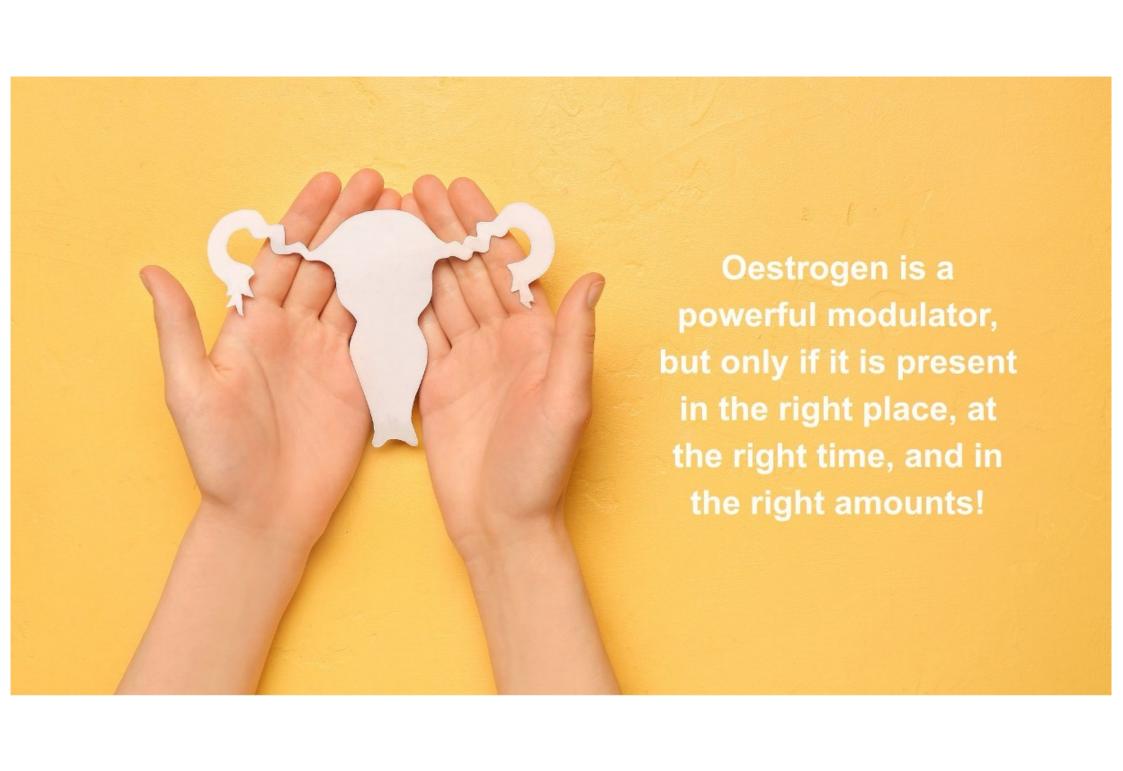
Why assess oestrogen metabolism?

- Reveals metabolism pathways and patterns
- Links results to symptoms and/or history
- Assess hormone-responsive cancer risk
- Useful pre-HRT baseline
- Relevant in autoimmune disease

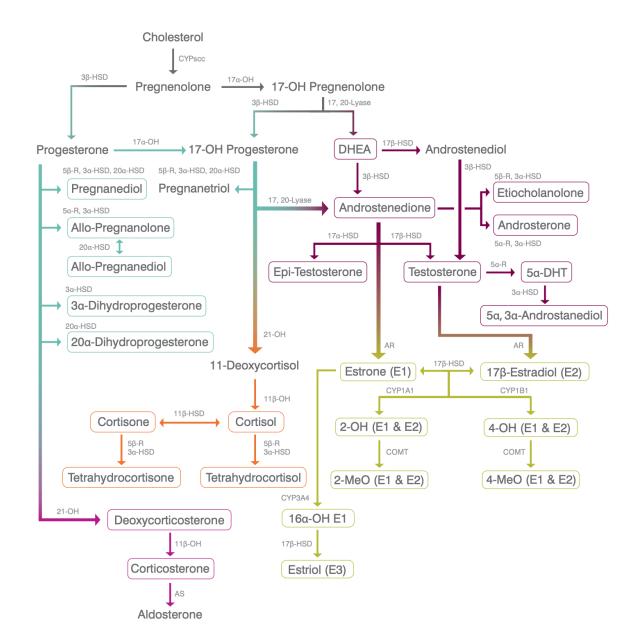
Oestrogen basics: where is it made?

- Ovarian granulosa cells (primary source, and most well know)
- Adipose tissue
- Skin fibroblasts
- Bone
- Brain
- Placenta
- ...almost everywhere!

Tissue targets


- Acts on every cell in the body
- Influences gene transcription
- Works via nuclear & membrane receptors
- Explains wide range of symptoms in menopause

Actions of oestrogen

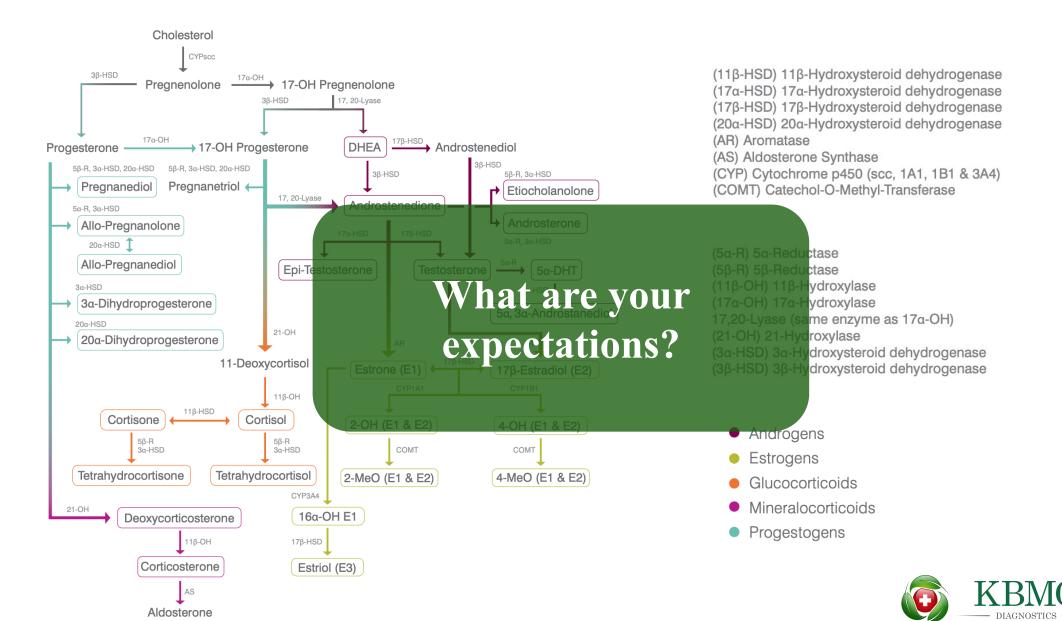

- Modulates inflammation
- Regulates cell proliferation & differentiation
- Influences angiogenesis
- Supports bone health
- Governs ovulation & reproduction
- Provides neuroprotection (key in menopause research)

Steroid Pathways

(11β-HSD) 11β-Hydroxysteroid dehydrogenase (17α-HSD) 17α-Hydroxysteroid dehydrogenase (17β-HSD) 17β-Hydroxysteroid dehydrogenase (20α-HSD) 20α-Hydroxysteroid dehydrogenase (AR) Aromatase (AS) Aldosterone Synthase (CYP) Cytochrome p450 (scc, 1A1, 1B1 & 3A4) (COMT) Catechol-O-Methyl-Transferase

(5α-R) 5α-Reductase (5β-R) 5β-Reductase (11β-OH) 11β-Hydroxylase (17α-OH) 17α-Hydroxylase 17,20-Lyase (same enzyme as 17α-OH) (21-OH) 21-Hydroxylase (3α-HSD) 3α-Hydroxysteroid dehydrogenase (3β-HSD) 3β-Hydroxysteroid dehydrogenase

- Androgens
- Estrogens
- Glucocorticoids
- Mineralocorticoids
- Progestogens



The Parent Oestrogens

- Oestriol (E3): weakest, lowest receptor binding (~1/10 of E2)
- Oestradiol (E2): most potent; postmenopausal elevations may increase risk in some contexts
- Oestrone (E1): converts to E2, E1-S, or metabolites; often elevated in PCOS

Oestrogen Metabolism

Oestrogen metabolism

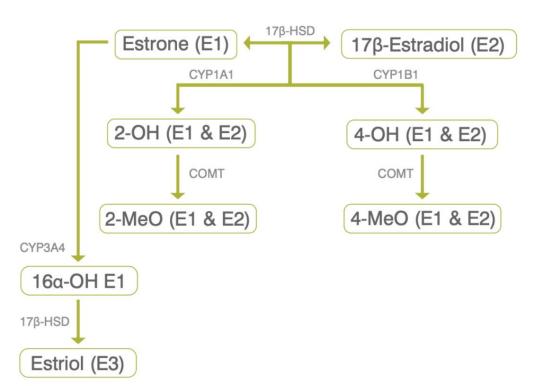
- Looks complex at first focus on the big picture
- 3 main cytochrome enzymes:

```
CYP3A4 → Oestriol (E3)
```

CYP1A1 → Oestrone (E1) & Oestradiol (E2)

CYP1B1 → Oestrone (E1) & Oestradiol (E2)

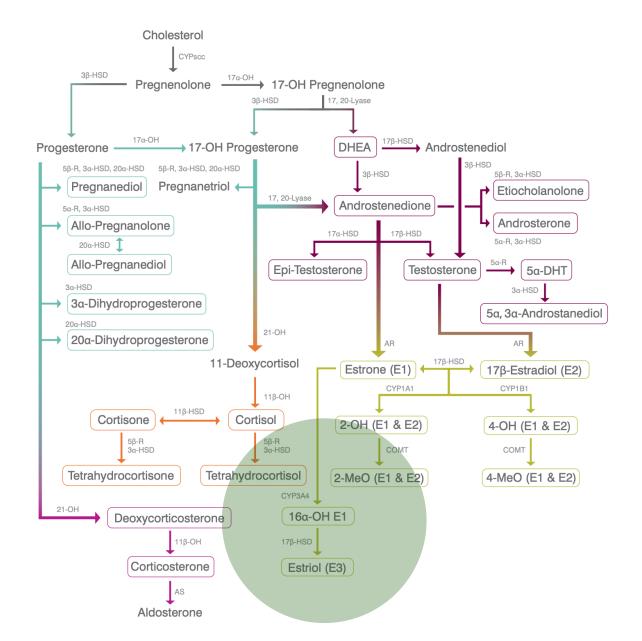
- COMT methylates catechol oestrogens (from CYP1A1 & CYP1B1)
- Metabolites are excreted in urine or stool


Oestrogen Quotient (EQ)

• EQ = E3
$$\div$$
 (E2 + E1)

- Ratio >1 = optimal
- Described by Henry Lemon: higher EQ linked to better breast cancer survival
- ZRT observation: low EQ sometimes seen with low iodine status (not diagnostic)

Steroid Hormone Cascade



- Aromatase → E1 & E2
- E1 ↔ E2 via 17β-HSD (type 1 & 2)
- E1 → 16-OH-E1 → E3 (CYP3A4)
- E1 & E2 → CYP1A1 / CYP1B1 →
 catechol metabolites → DNA adduct risk
- COMT methylation = protection

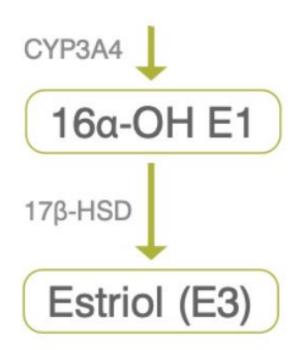
(11β-HSD) 11β-Hydroxysteroid dehydrogenase (17α-HSD) 17α-Hydroxysteroid dehydrogenase (17β-HSD) 17β-Hydroxysteroid dehydrogenase (20α-HSD) 20α-Hydroxysteroid dehydrogenase (AR) Aromatase (AS) Aldosterone Synthase (CYP) Cytochrome p450 (scc, 1A1, 1B1 & 3A4) (COMT) Catechol-O-Methyl-Transferase

(5α-R) 5α-Reductase (5β-R) 5β-Reductase (11β-OH) 11β-Hydroxylase (17α-OH) 17α-Hydroxylase 17,20-Lyase (same enzyme as 17α-OH) (21-OH) 21-Hydroxylase (3α-HSD) 3α-Hydroxysteroid dehydrogenase (3β-HSD) 3β-Hydroxysteroid dehydrogenase

- Androgens
- Estrogens
- Glucocorticoids
- Mineralocorticoids
- Progestogens

CYP3A4

- Handles many substrates highly active enzyme
- Overactivity → ↑ 16-OH-estrone
- Impacted by lifestyle, diet, meds, supplements
- Many inhibitors & inducers (check reliable sources)



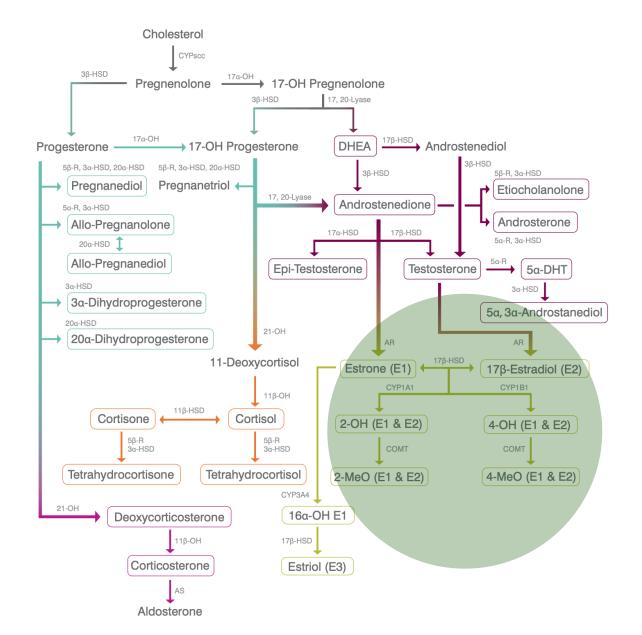
16-OH E1

- Post-menopause: supportive for bone & blood pressure
- Pre-menopause: proliferative,

 cancer risk,

 inflammation
- Context-dependent interpretation varies

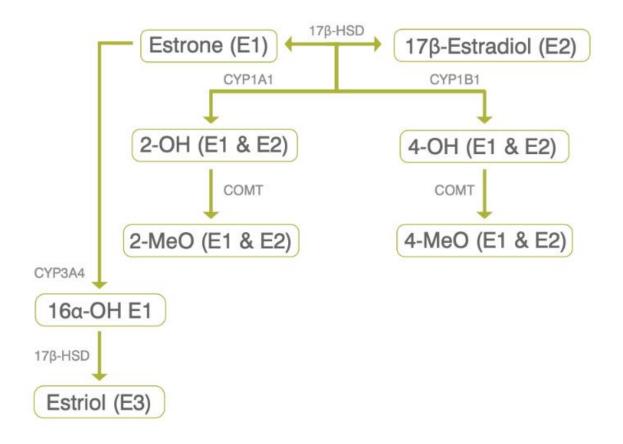
CYP3A4 & 16-OH E1


Increased by:

- Smoking
- Caffeine
- BPA
- St John's Wort
- Pesticides
- PAHs
- Alcohol (even moderate)
- Obesity

Decreased by:

- Grapefruit
- Resveratrol
- Rosemary
- Wild yam
- Peppermint oil
- Curcumin (mild inhibition)
- Azole antifungals
- Some antibiotics


(11β-HSD) 11β-Hydroxysteroid dehydrogenase (17α-HSD) 17α-Hydroxysteroid dehydrogenase (17β-HSD) 17β-Hydroxysteroid dehydrogenase (20α-HSD) 20α-Hydroxysteroid dehydrogenase (AR) Aromatase (AS) Aldosterone Synthase (CYP) Cytochrome p450 (scc, 1A1, 1B1 & 3A4) (COMT) Catechol-O-Methyl-Transferase

(5α-R) 5α-Reductase (5β-R) 5β-Reductase (11β-OH) 11β-Hydroxylase (17α-OH) 17α-Hydroxylase 17,20-Lyase (same enzyme as 17α-OH) (21-OH) 21-Hydroxylase (3α-HSD) 3α-Hydroxysteroid dehydrogenase (3β-HSD) 3β-Hydroxysteroid dehydrogenase

- Androgens
- Estrogens
- Glucocorticoids
- Mineralocorticoids
- Progestogens

CYP1A1 & CYP1B1

CYP1A1 & CYP1B1

Both → catechol oestrogens

CYP1A1 → 2-OH (safer pathway)

CYP1B1 → 4-OH (riskier pathway)

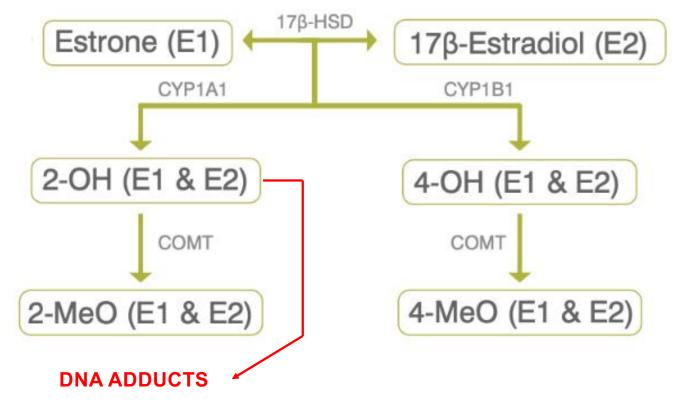
- Catechols → quinones → potential DNA damage
- Influenced by genetics + lifestyle

2-OH E1 & E2

CYP1A1 (the "2s")

Good:

- Protective
- Weaker activity
- Less carcinogenic
- Less proliferation
- Induces apoptosis


Bad:

- High levels may be associated with endometrial cancers
- Higher in AI (e.g. RA or SLE)
- Can form quinones if not methylated

Take-home: The 2s are not a free pass! Good or bad? Depends on context

2-OH E1 & E2

Supporting CYP1A1 & "the 2s"

Speeds up:

- Cruciferous vegetables
- Flax
- Fish oils
- Soya
- Rosemary
- Thyroxine

Slows down:

- Coffee
- Smoking
- Alcohol
- High sugar diet
- Resveratrol

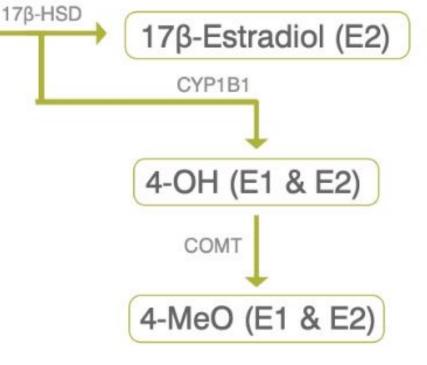
Clearance is also important (COMT/methylation)

Detox, methyl donors and gut health (FIT Test & Gut Barrier Panel)

4-OH E1 & E2

CYP1B1 & "the 4s"

- Proliferative, anti-apoptotic
- Higher activity in pregnancy and myometrium
- Prefers E2 > E1 (higher affinity)
- Can form DNA adducts under oxidative stress
- Binds to oestrogen receptors



4-OH E1 & E2

Can form E2-3,4 quinones

Estrone (E1)

- Reactive intermediates → potential DNA adducts
- Important to measure and manage

Methylation

What Can Impact Methylation?

- Genetics (COMT variants)
- Co-factors: Mg, B vitamins, folate, choline, methionine, SAMe, TMG
- Medications: OCPs, diuretics, PPIs, corticosteroids, sulfonamides
- Physiology: hypochlorhydria, smoking, SAD (seasonal affective disorder)
- Enhancers: ellagic acid (berries), lithium orotate, riboflavin, lower protein

How to Assess Methylation?

Assess the relativity of the hydroxylated intermediates to the methylated products.

2- & 4-MeO Products

Produced via COMT - SNPs can limit methylation

Products = inert / beneficial

Key question: COMT activity?

Support by:

 oxidative stress, methylation co-factors, neutralising catechols

Reducing Oxidative Stress

- Resveratrol
- Quercetin & bioflavonoids
- Proanthocyanidins
- Selenium
- Grape seed / pine bark extract
- Glutathione & NAC
- Avoid toxin exposure
- Aim: reduce risk

Supporting Methylation

 Key supports: DIM, TMG, SAMe, B6, B12, folate (MTHFR), methionine, betaine, magnesium

More methylation ≠ better

Always monitor client symptoms (e.g. wired, overstimulated)

Phase 1

Phase 2

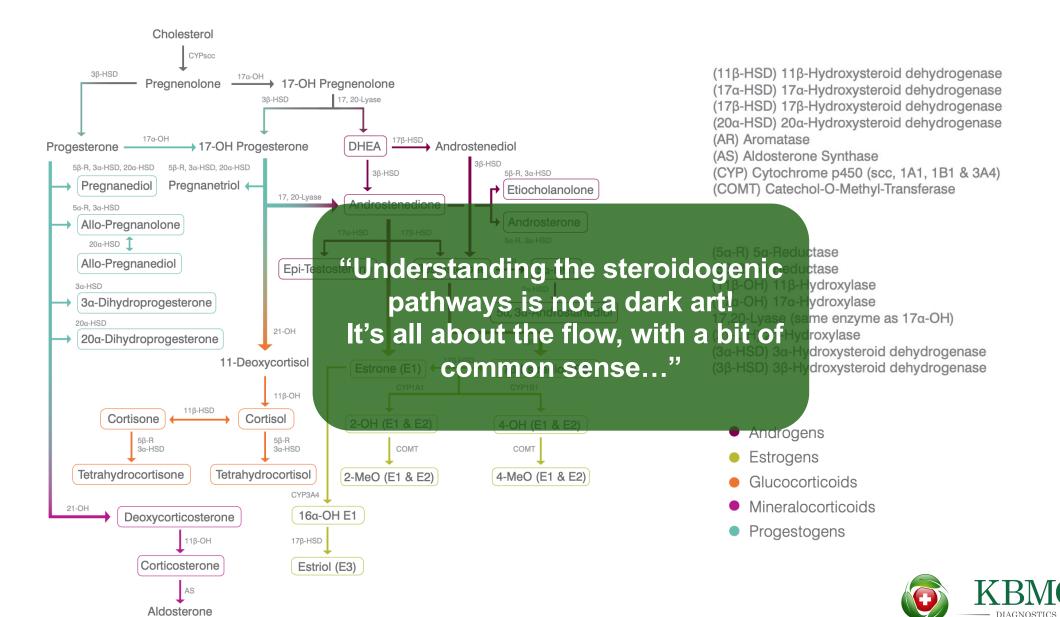
"Putting out the rubbish"

How full is the bin? Fast/slow? Clean/dirty?

"Bin-day"

How quickly/regularly are the bins cleared?
Is anything left behind?
Are the bins left clean/tidy?

"The dump"


Are the roads clear? Is it open? Landfill or recycling? Hydroxylation

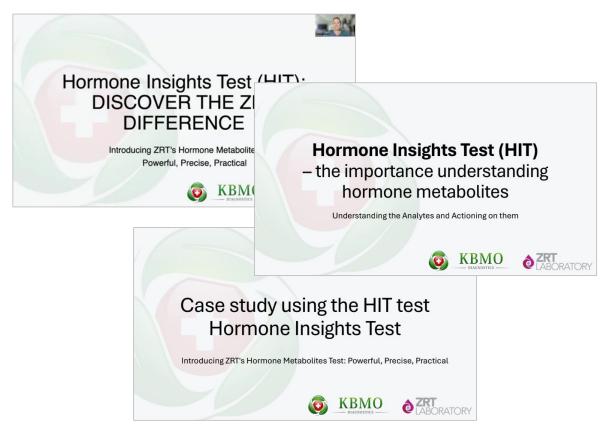
Methylation Glucuronidation Sulphation

Estrobolome

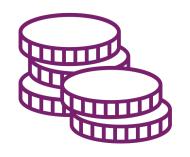
Bisphenol-A

Bisphenol-A

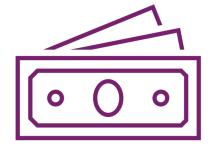
- Suppresses methylation
- Potent endocrine disruptor
- Binds oestrogen receptors → proliferation signaling
- Implicated in in utero effects
- Linked to cancers
- Found in plastics, till receipts, can linings
- Hard to avoid use vigilance & common sense



What's Next?



Dr Shania Seeber




Pricing & Postage

Practitioner Price £249

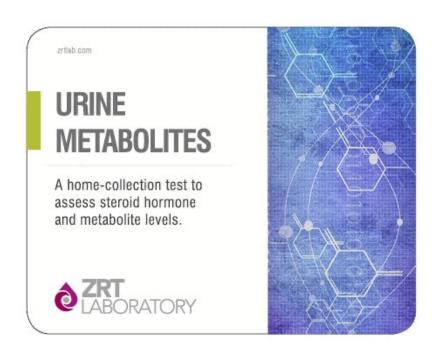
Retail Price £299

FREE Postage & Returns

Your Next Steps with HIT

- Order your first test at www.kbmodiagnostics.co.uk
- Attend your first 1:1 session
- Bring your cases and questions to the Hormone Help Hour
- Enjoy the 3 brilliant webinars with Dr Shania Seeber to build your knowledge on the HIT.

Stay in Touch


ukoffice@kbmodiagnostics.com

www.kbmodiagnostics.co.uk

@kbmodiagnosticsuk

Thank You

